Math 115
Spring 2018
Lecture 26

$$
\begin{aligned}
& 3 a^{2}+b^{2}=c^{2} ? \\
& y=m x+b d=r t
\end{aligned}
$$

Last Chapter: Rational Expressions

$$
\frac{\text { Polynomial }}{\text { Polynomial }} \frac{x^{2}-4}{x^{2}+3 x+2}, \frac{6 x+10}{10 x+8}, \frac{x^{2}-2 x-48}{x^{2}-2 x-35}
$$

How to reduce/Simplify them:
(1) factor numerator and denominator Completely.
(2) Cross out any Common factor.

Simplify

$$
\begin{aligned}
& \frac{6 x+10}{8 x-14}=\frac{\mathscr{L}^{\prime}(3 x+5)}{\mathcal{Z}^{\prime}(4 x-7)}=\frac{3 x+5}{4 x-7} \\
& \frac{5 x^{2}-15 x}{10 x^{2}+25 x}=\frac{5 x(x-3)}{5 x(2 x+5)}=\frac{x-3}{2 x+5}
\end{aligned}
$$

Simplify
(1) $\frac{x^{2}-4}{x^{2}+3 x+2}$

$$
=\frac{(x+2)(x-2)}{(x+1)(x+2)}
$$

$$
=\frac{x-2}{x+1}
$$

$$
\text { (2) } \begin{aligned}
& \frac{x^{2}-2 x-48}{x^{2}-36} \\
&= \frac{(x-8)(x+6)}{(x+6)(x-6)} \\
&= x-8 \\
& x-6
\end{aligned}
$$

$$
\text { (3) } \begin{aligned}
& \frac{2 x^{2}+3 x-5}{3 x^{2}+2 x-5} \\
= & \frac{(2 x+5)(x-1)}{(3 x+5)(x-1)}
\end{aligned}
$$

(4) $\frac{x^{3}+5 x^{2}+25 x}{x^{3}-125}$

$$
=\frac{x\left(x^{2}+5 x+25\right)}{x^{3}-5^{3}}
$$

$$
=\frac{x\left(x^{2}+5 x+25\right)}{(x-5)\left(x^{2}+5 x+25\right)}
$$

$$
=\frac{x}{x-5}
$$

Excluded Values: Any value that makes the rational expression undefined is called excluded value.
Polynomial

To find excluded Valves:

$$
\text { Reno. }=0
$$

(1) Dent. $=0$
(2) Solve
find all excluded Values

$$
\begin{aligned}
\frac{x+1}{x-5} & \rightarrow x-5=0 \\
& x=5 \quad \text { E.V.:5 }
\end{aligned}
$$

find all excluded values:

$$
\begin{aligned}
& \text { (1) } \frac{2 x-7}{3 x+5} \\
& 3 x+5=0 \\
& 3 x=-5 \\
& x=\frac{-5}{3} \text { E.V. : } \frac{-5}{3}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \frac{x-7}{x^{2}-2 x-35} \\
& x^{2}-2 x-35=0 \\
& (x-7)(x+5)=0 \\
& \text { By Z.P.R. } \\
& x-7=0 \quad x+5=0 \\
& x=7 \quad x=-5
\end{aligned}
$$

find all excluded values:
(1) $\frac{2 x-9}{x^{2}-36}$

Deno. $=0$, Solve

$$
x^{2}-36=0
$$

$$
(x+6)(x-6)=0
$$

by Z.F.R.

$$
\overbrace{\text { (ev. }-1 \leqslant \frac{7}{3}}^{\substack{x+6=0 \\ x=-6}}
$$

(2) $\frac{3 x^{2}+7 x}{3 x^{2}-4 x-7}$

Dend. $=0$, Solve
$3 x^{2}-4 x-7=0$
$a x^{2}+b x+c=0$
$a=3 \quad b=-4 \quad c=-7$
$b^{2}-4 a c=(-4)^{2}-4(3)(-7)=$
$=16+84=100$

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
&=\frac{-(-4) \pm \sqrt{100}}{2(3)} \\
&=\frac{4 \pm 10}{6} \quad x=\frac{4+10}{6}=-7 \frac{7}{3} \\
& \quad x=\frac{4-10}{6}=--1
\end{aligned}
$$

Find all excluded Valves:

$$
\begin{aligned}
& \frac{x^{2}-6 x+1}{5 x^{2}+2 x-3} \\
& \text { Deno. =0, Solve } \\
& 5 x^{2}+2 x-3=0 \\
& a x^{2}+b x+c=0 \\
& b^{2}-4 a c= \\
& a=5 \quad b=2 \quad c=-3 \\
& (2)^{2}-4(5)(-3)=64 \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-2 \pm \sqrt{640}}{2(5)}=\frac{-2 \pm 8}{10} \quad x=\frac{-2+8}{10}=\frac{6}{10}=\frac{3}{5} \\
& \text { E.V.: }-1 \div \frac{3}{5} \\
& x=\frac{-2-8}{10}=\frac{-10}{10}=-1
\end{aligned}
$$

How to multiply rational expressions:
(1) factor everything Completely
(2) Cross-out common factors vertically or diagonally.
(3) write the remaining factors in product form.
Multiply

$$
\begin{aligned}
\frac{x^{2}-4}{x^{2}+7 x+10} \cdot \frac{x^{2}-25}{x+7} & =\frac{(x+2)(x-2)}{(x+2)(x+5)} \cdot \frac{(x+5)(x-5)}{x+7} \\
& =\frac{(x-2)(x-5)}{x+7}
\end{aligned}
$$

Multiply:

$$
\begin{aligned}
& \frac{x^{2}+7 x+12}{x^{2}-16} \cdot \frac{x^{2}+2 x-24}{x^{2}+3 x} \\
& =\frac{(x+4)(x+3)}{(x+4)(x-4)} \cdot \frac{(x-4)(x+6)}{x(x+3)} \\
& =\frac{x+6}{x}
\end{aligned}
$$

Mu Hiply

$$
\begin{aligned}
& \frac{m^{2}+3 m+2}{m^{2}+5 m+4} \cdot \frac{m^{2}+10 m+24}{m^{2}+5 m+6} \cdot \frac{m^{2}-1}{m^{2}+1} \\
= & \frac{(m+2)(m+1)}{(m+1)(m+4)} \cdot \frac{(m+4)(m+6)}{(m+2)(m+3)} \cdot \frac{(m+1)(m-1)}{m^{2}+1} \\
= & \frac{(m+1)(m+6)(m-1)}{(m+3)\left(m^{2}+1\right)}
\end{aligned}
$$

Multiply:

$$
\begin{aligned}
& \frac{2 m^{2}-5 m-12}{m^{2}-10 m+24} \cdot \frac{m^{2}-9 m+18}{4 m^{2}-9} \\
& =\frac{(2 m+3)(m}{(m-4)(m-6)} \cdot \frac{(m-6)(m-3)}{(2 m-3)(2 m+3)} \\
& =\frac{m-3}{2 m-3}
\end{aligned}
$$

How to divide rational expressions:
(1) Change \div to . with the reciprocal
(2) factor everything Completely
(3) Simplify.

Divide

$$
\begin{aligned}
\frac{3 x-27}{4} \div \frac{2 x-18}{12}= & \frac{3 x-27}{4} \div \frac{12}{2 x-18} \\
& =\frac{3(x-9)}{4} \cdot \frac{12^{3}}{2(x-9)} \\
& =\frac{9}{2}
\end{aligned}
$$

Divide:

$$
\begin{gathered}
\frac{x^{2}-4}{8 x-16} \div \frac{x+2}{8}=\frac{(x+2)(x-2)}{8(x-2)} \cdot \frac{8}{x+2} \\
=\frac{8}{8}=1
\end{gathered}
$$

Simplify:

$$
\begin{aligned}
& \frac{x^{2}+2 x-3}{x^{2}-3 x+2} \div \frac{x^{2}+4 x+3}{x^{2}+2 x-8} \\
= & \frac{x^{2}+2 x-3}{x^{2}-3 x+2} \cdot \frac{x^{2}+2 x-8}{x^{2}+4 x+3} \\
= & \frac{(x+3)(x-1)}{(x-2)(x-1)} \cdot \frac{(x+4)(x-2)}{(x+3)(x+1)}=\frac{x+4}{x+1}
\end{aligned}
$$

Solve by Zero-Product rule:

$$
\begin{array}{ccc}
(3 x-5)(4 x+7)(7 x-2)=0 \\
3 x-5=0 & \text { or } 4 x+7=0 & \text { or } \\
x=\frac{5}{3} & x=\frac{-7}{4} & x=\frac{2}{7} \\
\left\{\frac{-7}{4}, \frac{2}{7}, \frac{5}{3}\right\} &
\end{array}
$$

Solve by factoring Method:

$$
\begin{aligned}
& x^{2}-2 x=80 \quad 2 x^{2}+6=13 x \\
& x^{2}-2 x-80=0 \quad 2 x^{2}+6-13 x=0 \\
& (x-10)(x+8)=0 \quad 2 x^{2}-13 x+6=0 \\
& \text { By Z.P.R. } \\
& x-10=0 \text { or } x+8=0 \quad(2 x-1)(x-6)=0 \\
& x=10 \quad x=-8 \text { By Z.P.R. } \\
& 2 x-1=0 \text { or } x-6=0 \\
& \{-8,10\} \\
& x=\frac{1}{2}\left\{\frac{1}{2}, 6\right\}^{x=6}
\end{aligned}
$$

FOIL, Simplify, Solve by factoring method:

$$
\begin{aligned}
& (2 x+3)(3 x-1)=35 \\
& 6 x^{2}-2 x+9 x-3-35=0 \\
& \begin{array}{ll}
\begin{array}{l}
6 x^{2}+7 x-38=0 \\
P=-228
\end{array} & \begin{array}{l}
-1,228 \\
S=7-228 \\
-2,114 \\
-3,76 \\
-4,57 \\
-4 x^{2}-12 x
\end{array} \underbrace{19 x-38}
\end{array} \begin{array}{l}
-6,38 \\
-12,19
\end{array} \\
& (x-2)(6 x+19)=0 \\
& \text { by Z.P.R. } \quad x-2=0 \\
& x=2 \quad x=\frac{-19}{6}
\end{aligned}
$$

FOIL, Simplify, Solve by Q-formula:

$$
\begin{aligned}
& (2 x+5)(3 x-4)=18 \\
& 6 x^{2}-8 x+15 x-20-18=0 \\
& 6 x^{2}+7 x-38=0 \quad a=6, b=7, c=-38 \\
& a x^{2}+b x+c=0 \quad b^{2}-4 a c=(7)^{2}-4(6)(-38) \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad x=\frac{-7 \pm \sqrt{961}}{12} \\
& \begin{aligned}
x=\frac{-7 \pm 31}{12} \quad x=\frac{-7+31}{12}=\frac{24}{12} & x=\frac{7-31}{12}=\frac{-38}{12} \frac{-19}{6} \\
x & \left\{\frac{-19}{6}, 2\right\}
\end{aligned}
\end{aligned}
$$

Next Project:
Polynomial Equations

$$
1-40
$$

use 4-Part Page one side only

Due Thursday

John invested Some money in 2% Simple interest account, and $\$ 500$ more than that in 5\%. simple interest account.
After 4 years, he earned \$310 in simple interest. How much per account?

Accounts	P	r	t	I
First Acct	x	.02	4	$x(.02)(4)$
Second Acct	$x+500$.05	4	$(x+500)(.05)(4)$

$$
\begin{aligned}
& .08 x+.2(x+500)=310 \\
& .08 x+.2 x+100=310 \\
& .28 x=210 \\
& x=\frac{210}{.28} \quad x=750
\end{aligned}\left\{\begin{array}{c}
\$ 750 @ 2 \% \text { rate } \\
\text { \& } \\
\$ 1250 @ 5 \% \text { rate }
\end{array}\right.
$$

Jake had $\$ 3000$. He invested Some in 5.5% account, and the rest of it, in 7.5\% account. After 1 year, his total earned simple interest was \$189. How much per account?

Acts	P	r	t	I
Acct I	x	.055	1	$.055 x$
Acct II	$3000-x$.075	1	$.075(3000-x)$

$$
\begin{aligned}
& .055 x+.075(3000-x)=189 \\
& \begin{array}{l}
.055 x \\
-225 \underset{-.075 x}{ }=189
\end{array} \\
& \begin{array}{l}
\$ 1800 @ 5.5 \% \text { account } \\
\$ 1200 \text { @ } 7.5 \% \text { account }
\end{array} \\
& \begin{array}{l}
-.02 x=-36 \\
x=\frac{-36}{-.02} \\
x=1800
\end{array}
\end{aligned}
$$

Mike put some money in Simple interest at 3\% APR.
He also put $\$ 500$ less than twice that
amount in simple interest at 4% APR.
He earned $\$ 105$ more interest in one Year from the second account. How much per Acct?

Acct	P	R	T	I
Acct I	x	3%	1	$.03 x$
Act II	$2 x-500$	4%	1	$.04(2 x-500)$

$$
\begin{aligned}
& \text { Acct II interest }=\text { Acct I interest }+105 \\
& .04(2 x-500)=.03 x+105 \\
& .08 x-20=.03 x+105 \\
& .08 x-.03 x=105+20 \\
& .05 x=125 \quad\left\{\begin{array}{c}
\$ 2500 \text { @ 3\% } \\
x=2500
\end{array}\right\} \begin{array}{l}
\$ 4500 \text { @ct 4\%.Acst }
\end{array}
\end{aligned}
$$

